7 research outputs found

    Integration of a Passive Exoskeleton and a Robotic Supernumerary Finger for Grasping Compensation in Chronic Stroke Patients: The SoftPro Wearable System

    Get PDF
    Upper-limb impairments are all-pervasive in Activities of Daily Living (ADLs). As a consequence, people affected by a loss of arm function must endure severe limitations. To compensate for the lack of a functional arm and hand, we developed a wearable system that combines different assistive technologies including sensing, haptics, orthotics and robotics. The result is a device that helps lifting the forearm by means of a passive exoskeleton and improves the grasping ability of the impaired hand by employing a wearable robotic supernumerary finger. A pilot study involving 3 patients, which was conducted to test the capability of the device to assist in performing ADLs, confirmed its usefulness and serves as a first step in the investigation of novel paradigms for robotic assistance

    PZT-actuated compliant locking device

    Get PDF
    In this paper, a novel design of a fully compliant locking device is presented, for possible application in robotic actuation systems. The synthesis method based on a rigid linkage mechanism is explained, a parametrization scheme is proposed, and an optimization procedure is conducted using kinetostatic flexible multi-body analysis in conjunction with global optimization techniques. The performance of the optimized locking device design is validated via numerical simulations

    Gravity Balancing Flexure Springs for an Assistive Elbow Orthosis

    Get PDF
    In this paper, we propose a flexure spring based gravity compensation device which provides assistance to lift the forearm. Three different spring designs are obtained and evaluated. The synthesis method to obtain these is explained in detail and an experimental evaluation validates the desired gravity balancing properties. It is found that in comparison to a flexure spring with constant thickness, a variable thickness distribution along the spring leads to a drastic reduction of its width, which amounts to 81 % in the presented case, and offers an energy to weight ratio that is 94 % higher. Employing a nested spring design further increases the storable elastic energy of the variable thickness design by 145 % through utilization of the otherwise unused space within the original spring envelope. A proof-of-concept prototype is built to illustrate a practical implementation. The presented synthesis method provides a tool to obtain gravity balancing flexure springs that offer a promising solution for the design of assistive devices which aim to be both wearable and inconspicuous.Precision and Microsystems EngineeringMechatronic Systems Desig

    Gravity Balancing Flexure Spring Mechanisms for Shoulder Support in Assistive Orthoses

    Get PDF
    Passive shoulder supports show large potential for a wide range of applications, such as assisting activities of daily living and supporting work-related tasks. The rigid-link architecture used in currently available devices, however, may pose an obstacle to finding designs that offer low protrusion and close-to-body alignment. This study explores the use of mechanisms that employ a flexible element which connects the supported arm to an attachment at the back and acts as energy storage, transmission and part of the load bearing structure. Based on the synthesis method explained in this paper, a large scope investigation into possible flexure-based mechanism topologies is conducted. Thereby, many potential designs are discovered, which are presented, categorized and compared. Two promising designs are developed into prototypes, and are built and tested on a dedicated test bench. These two mechanisms reduce the necessary moment to lift the arm by more than 80 % throughout 85 % of the range of motion, while staying within 18 cm and 10 cm distance from the body, respectively. The study indicates that, due to its lower protrusion and interface loads, a design with a tapered flexure connecting the upper arm via a hinge to a spring-loaded slider at the back offers the most promising solution.Accepted Author ManuscriptPrecision and Microsystems Engineerin

    A compact McKibben muscle based bending actuator for close-to-body application in assistive wearable robots

    Get PDF
    In this letter we demonstrate a pneumatic bending actuator for upper-limb assistive wearable robots which uses thin McKibben muscles in combination with a flexure strip. The actuator features both active soft actuation and passive gravity support, and in terms of force transmission bridges the gap between the classic rigid type actuators and the emerging soft actuator technologies. Its flexure strip leverages the high-force low-displacement properties of McKibben muscles towards a large rotational range of motion and reduces localized forces at the attachments. We explain the synthesis method by which these actuators can be obtained and optimized for high specific moment output. Physical specimens of three optimized actuator designs are built and tested on a dedicated experimental setup, verifying the computational models. Furthermore, a proof-of-concept upper-limb assistive wearable robot is presented to illustrate a practical application of this actuator and its potential for close-to-body alignment. We found that based on our currently available components actuators can be built which, given a width of 80 mm, are able to produce a moment exceeding 4 Nm at an arm elevation of 90 deg.Precision and Microsystems EngineeringMechatronic Systems Desig

    The SoftPro Wearable System for Grasp Compensation in Stroke Patients

    No full text
    This extended abstract presents a wearable system for assistance that is a combination of different technologies including sensing, haptics, orthotics and robotics. The result is a device that, by compensating for force deficiencies, helps lifting the forearm and thanks to a robotic supernumerary finger improves the grasping ability of an impaired hand. A pilot study involving three post-stroke patients was conducted to test the effectiveness of the device to assist in performing activities of daily living (ADLs), confirming its usefulness
    corecore